+ Konu Cevapla
2 / 2 Sayfa BirinciBirinci 1 2
6 den 7´e kadar. Toplam 7 Sayfa bulundu

uzay araştırmaları yapan bilim insanları kimlerdir

 Forum Hakkında Katagorisinde ve  Sorun Cevaplayalım Forumunda Bulunan  uzay araştırmaları yapan bilim insanları kimlerdir Konusunu Görüntülemektesiniz.=>Johannes Kepler Babası yoksul bir paralı asker, annesi de bir hancının kızıydı. Başlangıçtan beri bozuk olan sağlığının üç yaşında yakalandığı ...

  1. #6
    Onursal Üye cicekbahcesi Baktabul'un Çılgını cicekbahcesi Baktabul'un Çılgını cicekbahcesi Baktabul'un Çılgını cicekbahcesi Baktabul'un Çılgını cicekbahcesi Baktabul'un Çılgını cicekbahcesi Baktabul'un Çılgını cicekbahcesi Baktabul'un Çılgını cicekbahcesi Baktabul'un Çılgını cicekbahcesi Baktabul'un Çılgını cicekbahcesi Baktabul'un Çılgını cicekbahcesi Baktabul'un Çılgını cicekbahcesi - ait Avatar
    Üyelik Tarihi
    Nov 2010
    Bulunduğu Yer
    Bilinmeyen yerden
    Mesajlar
    4.438
    Blog Yazıları
    740
    Tecrübe Puanı
    107374576

    Tanımlı Ce: uzay araştırmaları yapan bilim insanları kimlerdir





    Johannes Kepler
    Babası yoksul bir paralı asker, annesi de bir hancının kızıydı. Başlangıçtan beri bozuk olan sağlığının üç yaşında yakalandığı ve gözleriyle ellerinin zayıf kalmasına neden olan, çicek hastalığından sonra daha da kötüleşmesi nedeniyle ailesi din adamı olarak yetiştirilmesine karar verdi. Çok yoksul bir aileden gelmesine karşın üstün zekasıyla küçük yaşta dikkatleri çeken Kepler, Württemberg dükünün yardımıyla Tübingen Universite’sinde sürdürdüğü öğrenimini 1588 de bitirdi. 1591′de aynı üniversitede lisansüstü çalışmasını tamamladı. Michael Mästlin’in Tübingen’deki astronomi derslerini izleyerek Copernik sistemini benimsemesi Keplerin sonraki yaşamı açısından önemli bir dönüm noktası oldu. Daha sonra başladığı ilahiyat öğreniminin son yılında iken Graz’da ki Lutherci lisede boşalan matematik öğretmenliğine atandı. Böylece ilahiyat öğrenimini bırakmış oldu. 1594′te gittiği Graz’da evrenin yapısına ilişkin araştırmalarına başladı. Platoncu felsefenin ve Pythagorasçı matematiğin etkisiyle evrende var olduğuna inandığı matematiksel uyumu ortaya koymaya çalıştı. Bu amaçla eski yunalılardan beri bilinen ve Platon cisimleri olarak adlandırılan beş düzgün çokyüzlüden yararlanmayı düşündü. Uzay da yalnız bu beş düzgün çokyüzlünün var olabileceği eski yunanlılarca kanıtlanmıştı. Bu beş düzgün çokyüzlü şunlardı. Dörtyüzlü (yüzleri dört eşkenar üçgen olan piramid),küp,sekizyüzlü(sekiz eşkenar üçgen), onikiyüzlü(oniki düzgün beşgen) ve yirmi yüzlü(yirmiş eşkenar üçgen). Bu çok yüzlüler köşelerinden geçen birer küre içine yerleştirilebildikleri gibi bunların içine yüzlerine orta noktalarından teğet olacak biçimde birer küre yerleştirilebilir. Copernik astronomisi her biri bir küre üzerinde dolanan altı gezegen tanıyordu. Kepler bu altı gezegenin üzerinde dolandığı kürelerin aralarında beş ploton cismi bulunacak biçimde iç içe yerleşmiş durumda olduklarını öne sürdü. Kepler 1600′de, o sıralarda imparatorluk matematikçiliğine atanan Tycho Brahe’nin yanına gitti ve onun asistanı oldu. Brahe ertesi yıl ölünce imparatorluk matematikçiliğine atandı. Kepler yıldızların insanların yaşamlarını yönlendirdiği yolundaki boş inancı redetmesine karşın, evren ile insan arasında belirli bir uyum olduğuna inanıyordu ve astrolojiye dayanan öngörüleriyle ün yapmıştı. Tycho Brahe’nin araştırma grubunda Kepler’e Mars’ın incelemesi görevi verilmişti. Ama o önce ışığın atmosferde kırılması olgusunu incelemek gerektiği kanısına vardı. Dış uzaydaki gökcisimlerinden gelen ışık ışınlarının, Yeri çevreleyen yoğın atmosfere girdiklerinde nasıl kırıldığı konusundaki araştırmalarının sonuçlarını Ad vitellionem Paralipomena Quibus Astronomiae Pars Optica Traditur(astronomideki optik konuların incelenmesi konusunda Vitellio’ya ek) gibi alçakgönüllü bir başlık altında yayımladı.Brahe’nin gözlem sonuçlarını dairelerden oluşan ve düşünebildiği her türden yörünge biçimine uydurmaya çalışıp başarıya ulaşamayan Kepler, Kopernik’in görüşlerinden de esinlenerek, dairesel olmayan yörüngeleride ele aldı. Ve doğru sonuca ulaştı. Mars odaklarından birinde Güneş bulunan eliptik bir yörüngede dolanıyordu. Gezegenler yörüngede dolanırken eşit zaman aralıklarında eşit yol almıyordu ama gezegeni güneşe birleştiren doğru parçası eşit zaman aralıklarında eşit alanlar tarıyordu Bu iki yasa bügün Kepler’in birinci ve ikinci yasası olarak bilinir. Keplarin üçünçü yasası ise Gezgenlerin güneşe olan ortalama uzaklıklarının üçünçü kuvveti , yörüngedeki dolanma sürelerinin karesiyle orantılıdır. Bu üç yasa yarım yüzyıl sonra Isaac Newton’un evrensel kütle çekimi yasasını bulmasında belirleyici rol oynamıştır.
    Nicolas Copernicus
    Copernik modern astronominin kurucusu olarak bilinir. Polonya’da doğdu. Cracow üniversitesine gönderildi. Burada matemetik ve optik üzerine çalıştı. Italya’ da amcasının zorlamasıyla akademik yaşamının geri kalan günlerini geçireceği Frauenburg katedraline rahip olarak atandı. Bu pozisyonundan dolayı gücünün doruğuna erişti. Fakat sürekli öğrenci olarak kaldı. Boş zamanlarında resim yaptı ve yunan şiirlerini latinceye çevirdi. Onun astronomiye zaten var olan merakı giderek bir numaralı ilgi alanı oldu. O araştırmalarını kendi başına ve yardım almadan yaptı. Gökyüzünü kathedralin duvarları içindeki bir kuleden gözlemledi ve bu gözlemleri teleskop’un icadına yüzlerce yıl kala çıplak gözle gerçekleştirdi. 1530′da dünyanın kendi ekseni etrafında günde bir kere , güneşin etrafında yılda bir kere döndüğünü iddia ettiği büyük çalışması De Revolutionibus’u bitirdi. Bu o zamanlar inanılmaz birşeydi. Copernik’e kadar, batı dünyası evrenin gerisinde hiçbirşey olmayan kapalı ve küresel bir yapıda olduğunu iddia ettiği Ptolemiac teorisine inanıyordu. O zamana kadar düşünürlerin hemfikir olduğu Claudius Ptolemy Alexandra’da yaşayan bir Mısırlı’ydı. Potelmy’e göre dünya; sabit, hareketsiz ve evrenin merkezine konumlandırılmış güneş dahil herşey onun etrafında dönmekte idi. Bu insan doğasına çekici gelen bir teoriydi. İnsanın günlük gözlemlerine ve egosuna uygun düşen birşeydi. Copernik teorisini yayımlamakta acele etmedi. Teorinin birkaç astronom arasında incelenerek, kendisine fikir verebileceğini düşündü. Copernik’ in çalışmaları, eğer genç bir adam bu çalışmaları 1939′da incelememiş olsaydı hiçbir zaman basılacak duruma gelemeyebilirdi. 66 yaşındaki bir rahibin yazısını okuyup ilgilenen 25 yaşındaki Alman Profesör George Rheticus ‘du. Copernik’in çalışmalarıyle birkaç hafta ilgilenmeyi tasarladı ama,iki yıl boyunca teori üzerine çalıştı ve teoriden çok fazla etkilendi. O zamana kadar Copernik teoriyi yayımlamakta isteksizdi. Kilisenin teorisi hakkında ne söyleyeceği ile çok ilgilenmesede o herşeyin mükemmel olmasını isteyen ve 30 yıl teori hakkında çalışmasına rağmen hiçbir zaman tamamlanmadığını düşünen biriydi. Copernik için gözlemler sürekli tekrar edilmeliydi(Ilginç olan dünyanın 300 yılının kaybına yolaçan elyazmaları 19. yüzyıl ortalarında Prag’da bulundu. Bu yazmalar gösterdi ki Copernik teorisini sürekli gözden geçiriyordu. Bu yazmaların hepsi o zamanlar için bilgili kişilerin kullandığı latince ile yazılmıştı.) Copernik 1543′de öldü ve hiçbir zaman çalışmalarının nasıl bir sansasyon yarattığını göremedi. Ortaçağdan kalma filozofik ve dinsel inanışlara karşı geldi. Copernik teorisi insanın, evrenin kendisi için yaratılmadığını, yalnızca onun bir parçası olduğunu düşünmeye zorladı. Onun çalışmalarının en önemli yanı insanın Cosmos’ a bakışını değiştirmiş olmasıdır
    Stephen Hawking
    Stephan Hawking 8 ocak 1942′de (Galileo’nun doğumundan tam 300 yıl sonra) Ingiltere Oxford’da doğdu.Ailesi kuzey Londra’da oturuyordu.Fakat II. dünya savaşı sırasında burası bebek dünyaya getirmek için çok emniyetli bir yer değildi. Bu yüzden Oxford’a taşındılar. Hawking sekiz yaşında iken, kuzey Londra’dan 20 mil uzaktaki St Albans gitti.Onbir yaşında St Albans okuluna kayıt oldu.
    Buradan mezun olduktan sonra babasının eski okulu Oxford üniversite’ si kollejine devam etti.

    Stephan babasının tıpla ilgilenmesini istemesine karşın, o matematiği seviyordu. Fakat okulun matemetik bölümü mevcut değildi. Bu yüzden onun yerine fizik okumaya başladı. Üç yıl sonra doğa bilimlerinde birinci sınıf onur madalyasıyla ödüllendirildi.

    Stephan daha sonra Cosmology üzerine çalışmak üzere Cambridge’ e gitti. O zamanlar Oxford’ da Cosmology üzerine çalışma yoktu. Cambridge’de Fred Hoyle’u supervisor olarak istemesine karşın süpervisorü Denis Sciama idi. Doktorasını aldıktan sonra ilk önce araştırma asistanı, daha sonra Gonville’ de Caius kollejde profesör asistanı oldu. 1973′de Astronomi Enstütüsünden ayrıldıktan sonra Stephan uygulamalı matematik ve teorik fizik bölümüne geçti. 1979′dan sonra matematik bölümünde Lucasian profesörü oldu. Bu profesörlük 1663 yılında üniversite parlemento üyesi olan Henry Lucas tarafından kurulmuştu. Ilk olarak Isaac Barrow sonra 1669′da Isaac Newton’a verilmişti.

    Stephan Hawking, evrenin temel prensipleri üzerine çalıştı. Roger Penrose ile birlikte Einstein’in Uzay ve Zamanı kapsayan Genel görecelik teoreminin Big Bang’le başlayıp karadeliklerle sonlandığını gösterdi. Bu sonuç Quantum Teorisi ile Genel Görecelik Teorisinin birleştirilmesi gerektiğini ortaya koyuyordu. Bu yirminci yüzyılın ikici yarısının en büyük buluşlarından biriydi. Bu birleşmenin bir sonucuda karadeliklerin aslında tamamen kara olmadığını, fakat radyasyon yayıp buharlaştıklarını ve görünmez olduklarını ortaya koyuyordu. Diğer bir sonucda evrenin bir sonu ve sınırı olmadığıydı. Buda evrenin başlangıcının tamamen bilimsel kurallar çercevesinde meydana geldiği anlamına geliyordu.

    Onun birçok kitabından bazıları, The Large Scale Structure of Spacetime, General Relativity: An Einstein Centenary Survey, ve 300 Years of Gravity. Stephen Hawking’in en popüler ve ençok satan iki kitabı; A Brief History of Time ve daha sonraki kitabı, Black Holes and Baby Universes and Other Essays.

    Profesör Hawking 12 onur derecesi almıştır. 1982′de CBE ile ödüllendirilmiş,bundan başka birçok madalya ve ödül almıştır. Royal Society’nin ve National Academy of Sciences (Amerikan ulusal bilimler akademisi(N.A.S.) ) üyesidir.

    O teorik fizik çalışmaları ve yüklü programına rağmen ailesine (üç çocuk ve bir torun) her zaman zaman ayırmayı bilmiştir

    Ernest Rutherford
    Babası araba tamiri ile uğraşan ve çiftçilik yapan Rutherford, ailenin on iki çocuğunun ikincisiydi. Çiftliklerinde çalışır, hemen her konuda babasına yardım ederdi; fakat okulda da başarılıydı. Hatta, Yeni Zelanda Üniversitesi’nin verdiği burslardan birini kazanıp, yüksek öğrenimini sınıf dördüncüsü olarak tamamladı. Rutherford, üniversitedeyken fiziğe duyduğu büyük ilgiyi bir de manyetik radyo dalgaları yakalayıcısı geliştirerek gösteriyordu. Buluşların günlük yaşama uygulanmalarıyla ilgilenmezdi.

    Cambridge Üniversitesi’nden burs kazandığı 1895 yılı, onun için bir dönüm noktası oldu. Verilen bursu birincilikle kazanan sınıf arkadaşı, ülkesinden ayrılmak istemediği için, ikinci sıradaki Rutherford, bu mutlu rastlantı ile bilim dünyasına kazanılıyordu. Aslında o yıl, Cambridge Üniversitesi’nin diğer üniversitelerin başarılı öğrencilerine ilk kez burs vermesi, Rutherford’un talih kapısını aralıyordu. Bursa haberi Rutherford’a ulaştığı zaman, tarlada patates söktüğü, bel küreğini bir kenara fırlatarak ‘artık bunları kim sökerse söksün’ dediği, hatta evlilik düşüncesinden de vazgeçip İngiltere’ye gittiği söylenir.

    Rutherford, Cambridge’de, J.J. Thomson’ın gözetiminde çalışıyordu. Hocası sesini ayarlayamayan, kaba tavırlı, fakat elleri son derece becerikli son derecece becerikli bu taşralı genci kısa sürede benimsiyordu. Bu, deneylerinde dağınık ve onu bunu deviren, döken Thomson için önemli bir yardım sayılırdı. Rutherford kısa bir süre, Kanada McGill Üniversitesi’nde kalıyor, evlenmek için Yeni Zelanda’ya gidiyor ve çalışmalarını sürdürmek için yeniden İngiltere’ye dönüyordu.

    Becquerel’in yakın izleyicisi Rutherford, yeni ve ilginç bir konu olan radyoaktivite alanında çalışmaya başlıyor, Curie’lerle ışıyan maddelerin yaydıkları ışınların birkaç çeşit olduğuna inanıyordu. Artı yüklü olanlara ‘Alfa’ ve eksi yüklü olanlara ‘Beta’ ışınları diyordu. Bu adlar ogün de kullanılıyordu, ancak ikisi birden ‘Hızlandırılmış Parçacıklar’ olarak ifade ediliyorlardı. 1900 yılında kimi ışımaların manyetik alandan etkilenmediği bulununca, Rutherford, bunların elektromanyetik dalgalardan oluştuklarını gösteriyor ve ‘Gama Işınları’ adını veriyordu.

    Rutherford önce Soddy ile birlikte, sonra yalnız başına Crookes’un, uranyumun ışıma sonucu başka bir maddeye dönüştüğünü gösteren öncü araştırmalarını sürdürüyordu. Uranyum ve Toryum üzerinde kimyasal işlemler yaparak ve ışımanın ne olacağı merakı ile Rutherford ve Soddy bu elementlerin, ışıma sonucu bir takım ara maddelere dönüştüklerini gösteriyorlardı. Hemen hemen aynı günlerde, Amerika’da Boltwood da bu gözlemleri doğruluyordu. Soddy bu çalışmaları daha da ilerleterek ‘İzotop’ kavramını ortaya atıyordu.

    Farklı her ara element, belli bir sürede miktarının yarısını kaybedecek bir hızla parçalanıyordu. Rutherford bu süreye ‘Yarı Ömür’ diyordu. 1906 ile 1909 yılları arasındaki sürede Rutherford ve yardımcısı Geiger, alfa parçacıklarını derinliğine inceliyorlar, bu parçacıkların elektronlarını kaybetmiş Helyum atomu olduğunu, hiçbir kuşkuya yer vermeyecek biçimde gösteriyorlardı. Alfa parçacıklarının Goldstein’in bulduğu artı yüklü ışınlara benzedikleri anlaşılıyor ve 1914 yılında Rutherford, en basit artı yüklü ışınların Hidrojen’den elde edilenler olması gerektiğini ileri sürerek, artı yüklü temel parçacık niteliklerinden dolayı ‘Proton’ adını kullanıyordu. Bundan sonraki yirmi yıl süresince her atomun eşit sayıda proton ve elektrondan oluştuğuna inanılıyor; fakat bugün kabul edilen yapısıyla hidrojen atomunun bir protonu olduğunu Heinsenberg gösteriyordu. Bugünkü bilgilere göre, proton artı; elektron eksi yüklüdür ve elektriksel olarak bir elektron, bir protonu dengeleyecek biçimde eşit yüklüdürler. Fakat protonun kütlesi, elektronun 1836 katıdır.

    Alfa parçacıklarına duyduğu ilgi, Rutherford’u daha önemli şeylere yöneltiyordu. 1906 yılında daha Kanada’nın McGill Üniversitesi’ndeyken, ince madensel levhaların alfa parçacıklarını nasıl dağıttığını incelemişti 1908 yılında İngiltere’ye döndüğünde Manchester Üniversitesi’nde de bu deneyleri sürdürüyordu. Yarım mikron kalınlığındaki bir altın levhaya alfa parçacıkları gönderiyor ve parçacıklardan çoğunun hiç etkilenmeden ve yön değiştirmeden aradaki fotoğraf plakasına kayıtlandıklarını görüyordu. Fakat fotoğraf üzerinde, hem de büyük açılarla kimi dağılımlar oluyordu. Altın levha, 2000 atom kalınlığında olduğu ve alfa parçacıklarının çoğu dağılmadan arkadaki fotoğraf plakasına geçtiklerine göre, altın atomlarının büyük bir bölümü boşluktan oluşmalıydı. Kimi alfa parçacıkları, yönlerinden çok kesin biçimde;hatta 90 derece saptıklarına göre, atomun bir yerinde artı yüklü, alfa parçacıklarını saptırabilecek güçte (benzer yükler itişirler) büyük kütleli bir bölge bulunmalıydı. Rutherford bu deneye dayanarak, çekirdekli atom kuramını ilk 1911 yılında açıklıyor, atomun merkezinde, bütün protonları kapsayan ve hemen hemen kütlesinin tamamını oluşturan çok küçük bir çekirdek bulunduğunu ileri sürüyordu. Atomun dış bölgesinde, çok hafif ve görünürde alfa ışınlarının geçmesini engellemeyen eksi yüklü elektronlar yörüngedeydiler.

    Bu atom fikri, 23 yüzyıl düşüncelere egemen olan Demokritus’un ‘maddenin en küçük parçası’ görüşünü yıkıyor ve gerçeklere daha çok uyan yeni bir model oluşturuyordu. Elementlerin ışıyarak ayrışması kuramı, alfa parçacıklarının yapıları üzeindeki çalışmaları, çekirdekli atom modeli Rutherford’a 1908 yılı Nobel Kimya ödülü kazandırıyordu. Başarıları bu kadarla kalmıyor, ilk kez Crookes tarafından düzenlenen ışıldama sayacını, yayılan ışınım (radyasyon) miktarını ölçmek için kullanılıyordu. Çinko sülfit bir ekran üzerindeki parıltıları sayarak (her atom parçasına karşılık bir parıltı) Rutherford ve Geiger, bir gram radyumun saniyede 37 milyar alfa parçacığı saldığını söyleyebiliyorlardı. Bu kadar büyük sayıda alfa parçacığı saçarak parçalanan maddelere, Curie’leri onurlandırmak için, o maddenin ‘Curie’si’ deniyordu. Bu arada Rutherford da unutulmuyor, saniyedeki bir milyon parçalanmaya ‘Rutherford’ adı veriliyordu.

    Bu çeşit parıldamalar daha sonra saniyede kullanılıyor ve eser miktarda radyum içerikli çinko sülfit saatlere yerleştiriliyor, rakamların karanlıkta da görülüp okunması sağlanıyordu. Fakat bu saatlerin üretiminde çalışan işçilerin radyum hastalığına tutulmaları nedeniyle, uygulamaya bir süre sonra son veriliyordu.

    Daha sonraları Rutherford, içine oksijen, hidrojen ve azot gazları doldurduğu bir silindirde ışıma miktarını ölçmeye girişiyor, azot gazında parıldamaların azaldığını; fakat hidrojen türünden olanların belirdiğini gözlüyordu. O halde alfa parçacıkları, azot atom çekirdeğinden protonlar çıkarıyordu. Çekirdekte kalan da oksijen atom çekirdeği olmalıydı. Böylece Rutherford, kendi ellerini kullanarak bir elementi diğerine dönüştüren ilk insan oluyordu. Başka bir deyişle, simyacıların rüyalarını gerçekleştiriyordu. Bu aynı zamanda, çekirdek tepkimesinin yapay ilk örneği oluyordu. Fakat 300 bin alfa parçacığından ancak biri çekirdek ile tepkimeye girdiği için, bir maddenin diğerine dönüştürülmesinde kolayca uygulanabilir bir yöntem sayılmıyordu.

    Rutherford, İkinci Dünya Savaşı’ndan önceki yıllarda amansız bir Nazi düşmanı oluyor, bir çok Yahudi bilim adamının Almanya’dan kaçırılması işlerine karışıyor; fakat zehirli gazlar üzerindeki çalışmaları nedeniyle Haber ‘e ilgi göstermiyordu. Rutherford atomun parçalanmasıyla elde edilen enerjinin denetim altına alınıp kullanılamayacağını söylüyor, Einstein kuramlarına inanmıyordu. Hahn’ın fizyon yöntemi ile enerjiyi nasıl denetim altına alabildiğini görüp tahminlerindeki yanılgıyı anlayamadan, yaşamını yitiriyor ve Newton ile Kelvin’in yanlarına gömülüyordu

  2. #7
    Onursal Üye cicekbahcesi Baktabul'un Çılgını cicekbahcesi Baktabul'un Çılgını cicekbahcesi Baktabul'un Çılgını cicekbahcesi Baktabul'un Çılgını cicekbahcesi Baktabul'un Çılgını cicekbahcesi Baktabul'un Çılgını cicekbahcesi Baktabul'un Çılgını cicekbahcesi Baktabul'un Çılgını cicekbahcesi Baktabul'un Çılgını cicekbahcesi Baktabul'un Çılgını cicekbahcesi Baktabul'un Çılgını cicekbahcesi - ait Avatar
    Üyelik Tarihi
    Nov 2010
    Bulunduğu Yer
    Bilinmeyen yerden
    Mesajlar
    4.438
    Blog Yazıları
    740
    Tecrübe Puanı
    107374576

    Tanımlı Ce: uzay araştırmaları yapan bilim insanları kimlerdir

    Sir Joseph John Thomson
    Joseph John Thomson 18 aralık 1856′da Manchester varoşlarından Cheetham Hill’de doğdu. 1870′de Owens College ve 1876′da Trinity College, Cambridge’ e burslu olarak girdi. 1880′de Trinity College’e akademi üyesi seçildi .Hayatı boyuncada akademi üyesi olarak kaldı. Daha sonra Lord Rayleigh’ın yerine Cambridge’e deneysel fizik profesörü oldu. 1884-1918 yılları arasında Cambridge ve Royal Institution’ın onursal profesörlüğüyle onurlandırıldı. Thomson’un ilk inceleme konusu ona 1884′de Adams ödülünü kazandıran, Treatise on the Motion of Vortex Rings adlı yapıtında bahsettiği, atomun yapısı üzerineydi. Onun, Application of Dynamics to Physics and Chemistry ve Notes on Recent Researches in Electricity and Magnetism adlı yapıtları, 1886 ve 1892 yıllarında yayımlandı. Bu son çalışması James Clerk Maxwell’in ünlü Treatise adlı yayımından sonra Maxwell’in üçüncü cildi olarak anılır. Ayrıca Thomson, Profesör J. H. Poynting ‘le dört ciltlik Properties of Matter adlı ders kitabında işbirliği yaptı. Ve 1885 yılında Elements of the Mathematical Theory of Electricity and Magnetism ‘i yayımladı. Thomson, 1896 yılında Princeton Universite’ sine son çalışmalarını özetleyen dört konferans vermek için gitti. Bu konferanslar daha sonra Discharge of Electricity through Gases (1897) ismiyle yayımlandı. Amerika’dan dönüşünde hayatının en görkemli çalışmasını gerçekleştirdi. Bu çalışma 30 şubat 1897′de Royal Institution ‘daki konferansında açıklayacağı, elektronun keşfiyle sonuçlanan Cathode ışıması idi. Onun 1903 ‘de yayımlanan Conduction of Electricity through Gases adlı kitabı, Rayleigh tarafından Thomson’un Cavendish Laboratuvarı’ ndaki çalışmalarının bir gözden geçirmesi olarak nitelendirilmiştir. Bu yayımın daha sonraki basımını kardeşiyle birlikte iki cilt olarak 1928 ve 1933 yıllarında yayımladı. Thomson, 1904 yılında Yale Universite ‘sinde elektrik üzerine altı konferans vermek için geri döndü. Bu konferanslar atomun yapısı üzerine bazı önerilerde bulunuyordu. Thomson, faklı atom ve molekülleri ayrıştırmak için bir yöntem geliştirdi. Bu yöntem daha sonra Aston, Dempster ve diğerleri tarafından birçok izotop’un bulunmasına yol açtı. Yukarıda bahsedilenler dışında, The Structure of Light (1907), The Corpuscular Theory of Matter (1907), Rays of Positive Electricity (1913), The Electron in Chemistry (1923) and his autobiography, Recollections and Reflections (1936), adlı yayımlarıda bulunmaktadır. 1884 yılında Royal Society üyeliğine seçildi. Ve 1916-1920 yılları arasında başkanlığını yaptı. 1894-1902 yıllarında Royal ve Hughes Madalyalarını, 1914 yılında Copley Madalyasını aldı. 1902′de Hodgkins Madalyası (Smithsonian Institute, Washington) ;1923′de Franklin Madalyası ve Scott Madalyası (Philadelphia), 1927′de Mascart Madalyası (Paris), 1931′de Dalton Madalyası (Manchester),ve 1938′de Faraday Madalyası (Institute of Civil Engineers) aldı. British Association ‘nın 1909′da başkanlığını yaptı. Ve Oxford, Dublin, London, Victoria, Columbia, Cambridge, Durham, Birmingham, ***tingen, Leeds, Oslo, Sorbonne, Edinburgh, Reading, Princeton, Glasgow, Johns Hopkins, Aberdeen, Athens, Cracow ve Philadelphia Universite’lerinden doktora diploması aldı. 1890′da Rose Elisabeth ile evlendi. Bir oğulları oldu. 30 Ağustos 1940 yılında öldü
    Niels Bohr
    Atomun yapısı üzerindeki çalışmaları ve atomların saçtığı ışın araştırmaları ile tanınır.
    Babası fizyoloji profesörü olan Bohr, 18 yaşında Kopenhag Üniversitesi’nde fizik tahsiline başladı. İyi bir futbolcuydu. Daha iyi bir oyuncu küçük kardeşi 1908 yılının dünya ikincisi Danimarka olimpiyat takımında yer aldı.

    26 yaşında doktorasını da tamamlayan Bohr, ileri eğitim bursuyla Cambridge’e gönderildi. Burada elektron kuramcısı J.J. Thomson ile ve daha sonra Manchester’de onun öğrencisi ve yine atom kuramcısı Rudherford ile çalıştı. 27 yaşında beş oğlu olduğu söylenen bir evlilik yaptı. 31 yaşında, fizik profesörü atandığı Kopenhag Üniversitesi’ne döndü.

    Rudherford, çekirdekli atom kavramını; yani merkezinde ağır çekirdek bulunan çevresinde daha hafif, bulutsu elektronların dolaştığı bir atom modelini ortaya atmıştı. Atomların nasıl enerji verdiklerini bu model ve Planck’ın on yıl kadar önce yayınladığı kuantum kuramı ile açıklıyordu. Elektronlar gittikçe daralan yörüngeler çizerek çekirdek etrafında dönüyor ve bu hareketleri enerji oluşturuyorlardı. Bohr, daralan yörünge ve sonuçta çekirdek üzerine düşen elektronların varolduğunu kabul etmiyordu.

    Atom modeli için daha inandırıcı bir biçim ararken Balmer’in hidrojen tayfı formülü onu, hidrojen atomunu daha yakından incelemeye yöneltti. Hidrojen atomu Lorentz’in belirlediği salınımdayken elektromanyetik ışınım yapmıyordu. Aslında Maxwell’in yasaları temel alındığında, böyle bir ışınım yapması gerekiyordu. Maxwell’e göre, kapalı bir yörüngede kaldıkları sürece ışınım olmayacağı görüşündeydi. Bu çelişkinin nedeni, elektronun sadece bir tanecik kabul edilmesinden ileri geliyordu. Nitekim De Broglie, elektronun yalnız tanecik değil, dalga boyu özellikli de olduğunu gösterince çelişki giderildi. Schrödinger de elektronun çekirdek etrafında dönmediği, yalnızca çevrede durağan bir dalga oluşturduğu görüşüyle, ileri sürülenleri doğruluyordu.

    Bohr,”Elektron,yörüngesini değiştirip çekirdeğe yaklaşınca, ışıma olur” diyordu. Fakat, ışın soğuran atomda da elektron çekirdekten daha uzak bir yörüngeye giriyordu. Bu nedenle, elektromanyetik ışınım, bu parçacıkların salınım veya hızlanmalarından değil; enerji düzeylerindeki değişmelerden ileri gelmeliydi. Bu düşünce, atom dünyasının insanın yaşadığı dünyaya benzemediğini gösteriyor, her geçen gün atomun yapısını sağduyu ile açıklamak güçleşiyordu.

    Sağduyu, örneğin gezegenlerin yörünge değiştirmediklerini söylüyordu. Elektron da, öyle herhangi bir yörüngeye giremezdi. Ayrıca, her yörünge değişmez bir enerji karşılığı idi. Eğer elektron bir yörüngeden diğerine geçiyorsa,saldığı veya soğurduğu enerji sabit olmalıydı. Bu miktar, kuantumların tümü demekti.Böylece, Planck’ın kuantum kuramı, elektronların atom içinde durum değiştirmeleri olarak yorumlanıyordu.

    Hatta Bohr, hidrojen tayfındaki çizgilere karşılık olan enerji yörüngelerini seçebiliyordu.Bununla, bir elktronu bir yörüngeden, çekirdekten daha uzak bir yörüngeye aktaracak miktardaki enerji kuantasının soğurulduğunu gösteriyordu. Özellikle, ilk kez Balmer’in dikkatleri çektiği hidrojen tayfındaki düzgünlük de açıklanabiliyordu.Elektronların belli enerjilerini hesaplayabilmek için Bohr, Planck’ın sabitesini 2*3,14 ile bölerek kullanıyordu.

    Bütün bunlara karşılık, tayf çizgilerinin ince ayrıntılarını açıklamak için Bohr’un kullandığı model yetersiz derecede karmaşıktı. Yörüngelerin yalnız dairesel olduklarını varsayıyor; fakat bu, Summerfield’in beyzi yörüngeler varsayıldığında durumun ne olacağı araştırmasını başlatıyordu. Sonuçta, değişik yörüngelerin kabul edilmesi zorunluluğu ortaya çıktı. Yapılması gerekli düzeltmeler bir yana; Bohr’un modeli atom tayfındaki çizgilerin ilk başarılı açıklaması oldu veya tayf çözümlemeleri ile atomların iç yapıları öğrenildi. Fakat yaşlı kuşağın tamamı, bu gelişmeleri benimsemiyordu. Rayleigh, Zeeman ve Thomson kuşku içindeydiler. Ancak, Bohr’un her zaman minnettar kaldığı Jeans, ondan yana çıkıyordu. Aslında Thomson’un karşı çıkmaları nedeniyle, Bohr ondan ayrılmış ve Rutherford ile çalışmayı yeğlemişti.

    Kuşkusuz sonuçta Bohr ezici bir başarı sağladı ve 1922 yılı Nobel Fizik Ödülü’nü aldı. Bunu izleyen yıllarda, ikisi de Nobel Fizik Ödülü alan Franck ve Hertz, deneysel çalışmalarıyla Bohr kuramını doğruladılar. Bohr, hidrojenden daha karışık atom modellerini bir türlü geliştiremiyor ve “Birden fazla elektronun bulunduğu atomlarda iç içe küreler vardır. Herhangi bir elementin kimyasal özelliklerini belirleyen en dış küredeki elektron içeriğidir” diyerek çok küreselliğe ilk işaret edenlerden biri oluyordu. Bu düşünce Pauli sayesinde meyvesini verdi. Elektronun hem parçacık (bohr’un fikri) hem dalga (Schrödinger’in düşüncesi) olarak tanımlanması, 1927 yılında Bohr’u, bugün “tümlerlik” diye bilinen ilkeyi önermeye zorladı. Bu, bir şeyin birbirinden tamamen bağımsız; fakat her ikisi de kendi koşullarında geçerli, iki değişik biçimde kabul edilmesi ilkesidir.

    1920-1930 döneminde Bohr, bir özel bira şirketinin desteğinde Atom Çalışmaları Enstitüsü’nü Kopenhag’da kurup yöneterek, (Joule zamanından beri bira sanayinin kuramsal fiziğe en büyük katkısı) burayı kuramsal fiziğin merkezi yaptı ve bilimsel yetenekleri Kopenhag’da toplayarak adeta yeni bir “İskenderiye” oluşturdu. 1933 yılında Hitler Almanya’da iktidara gelince, korku içindeki meslektaşları yararına elinden geleni yaptı, özellikle Yahudi fizikçilerin güvenliğini sağladı. Bir toplantı için 1939 yılında Amerika Birleşik Devletleri’ni ziyareti sırasında Hanh’ın “Uranyum, nötronlarla (on yıl kadar önce Chadwick’in bulduğu yüksüz dolayısıyla nötron adı verilen parçacık) bombardıman edilirse parçalanır (fission)” düşüncesini Lisse Meitner’in açıklayacağını söylemesi üzerine toplantı dağıldı ve bilim adamları bu düşünceyi sınamak üzere ülkelerine döndüler. Daha sonraları bu düşünce doğrulandı ve olaylar hızla gelişerek atom bombasında doruk noktasına ulaştı.

    Bohr, fisyon sürecine ait bir kuram geliştirmeye koyuldu. Bunda atom çekirdeğinin sıvı damlası gibi davrandığını varsayıyordu. Bohr, bu modelden yararlanarak, birkaç yıl önce Dempster’in bulduğu uranyum 235 izotopunun fisyona uğradığı sonucuna vardı ve bu çıkarımı kısa süre sonra doğrulandı.

    Danimarka, 1940 yılında işgal edilince Chadwick’in önerisine uyarak ve bin bir güçlükle İsveç’e kaçtı, böylece muhakkak bir tutuklanmadan kurtuldu. Orada faaliyetlerini genişleterek, çoğu Yahudi bilim adamının Hitler’in elinden kurtulmasını sağladı. Sonra küçük bir uçakla İngiltere’ye geçerken yüksekten uçmak zorunluğu, neredeyse oksijensiz kalıp ölümüne sebep olacaktı. Danimarka’dan ayrılmadan önce Franck ve Lane’nin kendisine emanet ettikleri Nobel madalyalarını da birlikte aldı (kendi madalyasını da Finli savaş kurbanlarına yardım için hibe etmişti) ve asit dolu bir şişeye doldurarak Nazilerin elinden kurtardı.

    1945 yılında Amerika Birleşik Devletleri’ne geçerek Los Alamos’daki atom bombası projesinde çalıştı. Atom bombasının sonuçları hakkındaki endişeleri ve uluslar arası denetim amacıyla atom sırlarının bütün müttefiklerce paylaşılması isteği Winston Churchill’i neredeyse tutuklanmasını emredecek kadar kızdırmıştı. Savaştan sonra Kopenhag’a döndü, asitte erittiği altını çöktürerek madalyaları yeniden döktürdü ve sahiplerine ulaştırdı. Bohr, atom enerjisinin barışçı amaçlarla kullanılması için durmadan, yorulmadan uğraştı ve 1955 yılında Cenova’da ilk “Barış için Atom Toplantısını” düzenledi. Bu çabaları da “Barış için Atom” armağanı ile ödüllendirildi.

    James Chadwick
    Atomun parçalarından nötronu bulmasıyla tanınır.
    İyi bir ilk ve orta eğitimden sonra Manchester üniversitesi fizik bölümünden 20 yaşında mezun oldu. Verilen bir burstan yararlanarak ve Geiger ile çalışmak amacıyla Almanya’ya gitti. Almanya savaşa girince bir at ahırına kapatıldı. Fakat çeşitli Alman fizikçilerinin yardımlarıyla 1919 yılında İngiltere’ye dönüp araştırmalarına başladı. Rutherford ile birlikte çeşitli elementlerin alfa parçacıklarıyla bombardımanı üzerinde çalıştı.

    Bu deneylerden elde ettiği verileri atomların çekirdekleri üzerindeki artı yükün hesabında kullandı. Aldığı sonuçlar Moseley’in geliştirdiği atom numaraları kuramına uyuyordu.

    1920 yılında atomun iki parçacığı olduğu biliniyordu: J.J. Thomson’un bulduğu elektron ve Rutherford’un keşfettiği proton. Protonların tamamı çekirdekteydi. Ama çekirdek atom kütlesinin çoğunu oluşturacak sayıda proton içeriyorsa yükü büyük bir artı değerde oluyordu. Örneğin, helyumun dört protonluk bir kütlesi vardı fakat yükü iki proton karşılığı idi. O halde, çekirdekte geri kalan iki protonluk yükü giderecek birkaç elektron bulunmalıydı. Fakat elektronlar çok hafif parçacıklar olduklarından kütleyi etkileyemezlerdi. Hatta elektronlar, protonları bir arada tutan “çimento” gibi düşünülüyordu. Çünkü elektron olmadan aynı yükteki protonların bir arada duramayıp ayrılacakları sanılıyordu. Bu görüşe göre, helyum çekirdeğinde dört proton ve iki elektron bulunmalıydı ki kütlesi dört ve yükü net artı iki olsun.

    Fakat fizikçilerin çoğu bu elektronlu çekirdekten rahatsız oluyor, yüksüz bir parçacığın varlığından şüpheleniyorlardı. Bu düşüncelerle Chadwick ve Rutherford gizemli parçacığı aramaya koyuldular fakat sonuç alamadılar. Güçlük, yüksüz parçacıkların hava moleküllerini iyonlaştırmamasıydı. Çünkü atomun parçacıklarının kolayca saptanması bu iyonlaştırma sayesinde mümkün oluyordu.

    1930 ve 1932 yıllarında Bothe ve Joliot-Currie’lerin yaptıkları deneyler, berilyum gibi hafif elementlerin alfa parçacıklara tutulması sonucu ışınma tespit ettiler. Bu, parafinden protonlar yayılmasından anlaşılıyordu. Fakat hiç kimse bu olayı açıklayamadı.

    Chadwick bu araştırmaları yeni deneyler yaparak sürdürdü. Ona göre akla yakın tek açıklama, alfa parçacıklarının berilyum atomu çekirdeğinden yüksüz parçacıkları çıkardığı ve bu yüksüz parçacıkların da (her biri bir proton kadar kütleli) parafinden protonları dışarı atmasıydı. Böylece, varlığından şüphelenilen yüksüz parçacık nötronu, bulmuş oldu.

    Daha sonraki araştırmalar nükleer tepkimelerin başlamasında büyük rolü olduğunu gösterdi. Buluşunun bu önemi dolayısıyla Chadwick 1935 yılı Nobel fizik ödülünü aldı. O zamanlar uranyum fizyonunun da nötron sayesinde başladığı henüz bilinmiyordu. Üç yıl sonra Hahn ve Meitner bunu da bulup Chadwick’in buluşunun önemini bir daha gösterdiler.

    Nötronun bulunmasıyla artık atom çekirdeğinde elektron bulunduğu görüşü geçersiz oldu. Fakat bu kez Heisen Berg, çekirdeğin proton ve nötrondan oluştuğunu ileri sürdü, yani helyum çekirdeği iki proton ve nötron içeriyor böylece kütlesi dört ve yükü de artı iki oluyordu. Belli bir elementin izotopları hep aynı sayıda proton içeriyor dolayısıyla çekirdek çevresindeki elektron sayıları da eşit oluyordu. Elementlerin kimyasal özelliklerinin elektronların sayı ve dizilişlerine bağlı olduğu anlaşıldı. İzotoplar ise aynı elementin değişik sayıda nötron içermesi sonucu oluşuyorlardı. Örneğin, iki cins klorin atomundan biri 17 proton ve 18 nötronla 35 kütleli ve diğeri de 17 proton ve 20 nötronla 37 kütlelidir. Onun için birine klorin 35 ve diğerine klorin 37 denilmektedir. Bütün bu buluş ve çalışmalarla 20 yıl kadar önce Soddy ve Asfon’un ortaya koydukları “izotoplar kuramı” bilimsel temele kavuşmuş oldu.

    Çekirdeğin proton ve nötrondan oluştuğu sonucuna varılması biri dışında bütün kuşkuları gidermişti. Fakat hepsi artı yüklü parçacıkları bu kadar dar bir yerde tutan neydi? Bu soruyu cevaplandırmak için üç yıl sonra sonuçlanacak Yukawa’nın çalışmalarının sonuçlarını beklemek gerekiyordu.

    İkinci Dünya Savaşı sırasında ve Meitner’in fizyon olayını açıklamasından hemen sonra fakat Amerika’nın el atmasından çok önce, Chadwick İngiltere’nin Atom Bombası Projesi’nin başına geçti ve önemli çalışmalar yaptı

    Andre Marie Ampere
    Elektrik akım şiddeti birimine adını veren Fransız Matematik ve Fizik Profesörü André – Marie Ampère’dir. Ampère’in deneysel araştırmaları manyetizmanın yeni teorilerini ve elktrodinamiğin esaslarını oluşturmuştur.

    Elektrik akım şiddeti uluslararası birim sisteminin temel büyüklüklerinden biri ve elektrik yükü taşıyıcılarının akı yoğunluğunu gösteren bir ölçüdür. Bunun birimi kısaltılmış olarak A ile gösterilen Amper’dir. Bu birime adını veren, elektrik akımı ile manyetizma arasındaki ilişkiyi tespit ederek, elektrodinamiğin temelini oluşturan Matematik ve Fizik Profesörü Fransız André – Marie Ampère’dir.

    Elektrik akımı biriminin tarifi için içinden elektrik akımı geçen iletkenleri birbirlerine çeken veya iten kuvvetten yararlanılır:

    1 Amper (A), vakum içine paralel olarak yerleştirilmiş, birbirleri ile aralarında 1 metre (m) aralık bulunan, doğrusal olarak sonsuza kadar uzanan, çapları ihmal edilebilecek kadar küçük yuvarlak kesitteki iletkenlerden zamana bağlı olarak değişmeden akan akımın, her metresinde (m), 0,2 mikronewton’luk (µN) bir kuvvet oluşturan akım miktarıdır.

    André – Marie Ampère, 22 Ocak 1775’de Lyon/Fransa’da bir tüccarın oğlu olarak dünyaya geldi. Hiç okula gitmedi. Lyon yakınlarında Poleymieux’deki evlerinde, babası tarafından eğitildi. Bu arada Ampère çağdaş ve klasik eserleri de okuyarak kendini daha da geliştirdi. Babası oğlunun matematik yeteneğini farkedince, onu bu yönde teşvik etti. Ampère 12 yaşında A. Euler ve Bernoulli’yi, 18 yaşında Lagrange’ın Analitik Mekaniğini okudu. Babası, 1793 yılında ihtilal çılgınlıkları arasında idam edildi. Bu Ampère için ilk kader şokuydu. 1800 yılında oğlu dünyaya geldi. Aynı yılda, Bourg Departement okulunda Matematik öğretmenliği görevine getirildi.1803 yılında karısı öldü. Bu onda derin bir depresyon yaratan ikinci bir kader şoku oldu. Ampère aynı yıl içinde Lyon Lyceum’unda ve doğa bilimleri dersleri Profesörü olarak göreve başladı ve 1804 yılında Paris Ecole Polytechnique’de Repetitor (müzakereci) ünvanını aldı ve Collegè de France’da Matematik ve Fizik Profesörü olarak dersler verdi. 1808 yılında Napoleon, Ampère’i yaşamının sonuna kadar tüm Fransa’da seyahat etmesini gerektiren bir göreve, Üniversiteler Genel Müfettişliği’ne atadı. Bu arada Tarih ve Felsefe Fakültesi’nde felsefe dersleri de veriyordu. 1809 yılında Titular Profesör (Ünvanını adı ile birlikte kullanma yetkisi olan Profesör) ve 1814 yılında Bilim Akademisi üyesi oldu. 1807 yılında Ampère ikinci kez evlendi. Ancak evlilik iki yıl sürdü. 1824 yılında Collegè de France’ta Deneysel Fizik Profesörü olan Ampère, mesleki kariyerinin zirvesine ulaştı. Ölüm onu Marsilya’ya yaptığı bir teftiş seyahati sırasında 10 Haziran 1836 günü yakaladı. Ampère’in kemikleri 1869 yılında Paris’e getirilerek Montmartre Mezarlığına gömüldü.

    Ampère her şeyden önce bir matematikçiydi. Henüz 13 yaşındayken koni kesitleri üzerinde çalışmıştı. Daha sonraları olasılık hesapları üzerine ve parsiyel diferensiyal denklemler üzerine temel düşünceleri ortaya koymuştu. “Ampère Zincirleme Kanunu” daha sonraları Maxwell denklemlerinin temelini oluşturmuştu. Büyük bir dahi bilim adamı olarak kimya problemleri de onu yakından ilgilendirmişti. Ampère, atom teorisi ve fiziksel kimyanın da öncüleri arasında sayılmaktadır. Ampère 1814 yılında, basınç ve sıcaklığın da eşit olması halinde, tüm gazların eşit hacımlarda eşit sayıda moleküle sahip olacacakları hipotezini ortaya koymuştu. Ampère’in, üç yıl önce İtalyan Fizikçi Kont Amedeo Conte di Quaregna e Ceretto Avogadro’nun (1776-1856) aynı yasayı biraz değişik bir biçimde dile getirdiğinden haberi yoktu. Ampère bir matematikçi olarak, genel fizik yasalarını deneysel olarak ortaya koyup, formüllerle tespit etme yeteneğine sahipti.

    Danimarkalı fizikçi Hans Christian Oersted’in (1771-1851) buluşundan hareketle, elektrik akımının, manyetizmanın nedeni olduğunu gördü. Oersted’in deneylerini devam ettirdi. Ampère yer küresinin manyetizmasının elektrik akımı geçen bir iletkeni etkilediğini düşünüyordu. 1820 yılında şamandra kuralı olarak tanımlanan kuralı ve Ampère’den bağımsız olarak bir kaç yıl sonra, Seebeck’in de açıkladığı “Selonoid” in manyetik etkisini açıkladı. Aynı yıl Ampère içinden akım geçen iki iletkenin, akımların yönü aynı olduğunda birbirlerini çektiklerini ve aksi yönde olduklarında ittiklerini kanıtladı. Böylece, daha sonraları elektrik motorlarının tasarımının gerçekleştirilmesini sağlayacak olan, elektro-mıknatısın radyal hareket oluşturmasının temel prensibi bulunmuş oldu.

    Ampère daha sonra, 1822 yılında olayı matematiksel olarak tespit etti ve elektrodinamiğin temel pransiplerini bilimsel olarak ortaya koydu. Bu temel yasaya göre içinden akım geçen iki paralel iletkeni, akımların yönlerine göre, iten veya çeken kuvvet, akım ile doğru, iletkenler arsındaki mesafe ile ters orantılıdır. Ampère tarafından tespit edilen elektrodinamiğin bu temel yasası, Charles Augustin de Coulomb’un (1739-1806) elektrik yükleri ve Henry Cavendish’in (1731-1810) kitle ile ilgili yasalarına çok benziyordu.

    Ampère, akan elektrik akımının manyetizmin nedeni olduğunu bulduktan sonra, atomların elektrik akımını taşıdıkları hipotezini ortaya koydu. Bundan başka, malzemelerin moleküler ring akımlarına götüren, yumuşak veya sert manyetik davranışlarını araştırdı. Ileri görüşlü bu dahinin buluşu ancak 100 yıl sonra, malzeme yapı modellerinleri üzerinde yapılan araştırmalarla, dairesel hareket eden elektronlar tarafından teyit edildi.

    Elektrodinamiğin esaslarını bulmanın yanısıra, Ampère ilk elektromanyetik telgrafı da buldu. 2 Ekim 1820’de, elektrik akımı ile hareket eden bir mıknatıslı iğne ile Lyon’da telgrafla haberleşmeyi önerdi. Elektromanyetik endüksiyon onun tarafından değil, ancak 10 yıl sonra İngiliz Michael Faraday (1791-1867) bulunduğu için, onun zamanında elektrik akımının ve geriliminin ölçülmesi mümkün değildi. Ampère, Galvanometre olarak tanımladığı bir akım gösterme cihazının yaratıcısı olarak da tanınır. O aynı zamanda o zamana kadar tartışmalı olan Akım ve Gerilim kavramlarını da yerleştirdi.

    André-Marie Ampère 1820-1825 yılları arasındaki çalışmalarını, 1826 yılında “Elektrodinamik Oluşumların, Yalnız Deneylerden Türetilmiş Matematiksel Teorileri Üzerine” adlı kitabında topladı. Bu ölümsüz doğa bilimleri eseri günümüzde bilinen elektrotekniğin temelini oluşturdu.

    André-Marie Ampère 10 Haziran 1836’da Marsilya’da (Fransa) 62 yaşında öldü. Yaşamının son 7 yılında, onu kuvvetten düşüren, akciğer nezlesi hastalığını çekti. Fakir ve yalnız olarak ziyaret ettiği Üniversite’yi denetledikten 24 saat sonra ateş krizi bastı.

    Dahi bir bilim adamı ve elektrodinamiğin kurucusu, André-Marie Ampère’in çalışmalarının ödülü, adının günümüzde birçok ölçü aletinde, cihazlarda, elektrik sayaçlarında, elektrik makinalarında, gemilerde ve caddelerde adının okunması ve onun şerefine elektrik akımı birimine adının konulmasıdır.

    Thales
    Bu okulun ilk temsilcisi olan Thales M.Ö. 624 yılında doğmuş ve M.Ö. 548 yılında ölmüştür. Varlıklı bir tacirdi. Yunanlı yedi bilgeden birisi olarak kabul edilmekteydi. Thales ile ilgili şu hikaye kayıtlara geçmiştir. Lidyalılarla Persler arasında uzun süren bir savaş sırasında, 28 Mayıs 585 tarihinde, Güneş’in tutulacağını önceden bildirmiş ve bu olaydan çok etkilenen iki kral derhal bu savaşa son vermişlerdir. Bu hikaye, ilk bakışta inanılmaz gibi görünmekteyse de, şu noktayı göz ardı etmemek gerekir: Babilliler, Güneş tutulmasını önceden bildirme olanağını veren Saros Periyodu’nu biliyorlardı. Söylendiğine göre, Thales Mısır’a gittiğinde bunu öğrenmişti. Ayrıca Mısır’da 603 yılındaki Güneş tutulmasını ya bizzat görmüş ya da Mısırlılardan işitmişti. 18 yıl 11 gün sonra, başka bir tutulmanın daha olacağı hesaplanabilirdi ve bu tutulma da 585 yılına rastlıyordu.

    İlk Yunan matematikçisi Thales’tir. Proklos, Thales’e ilişin olarak şunları söyler :

    “İlk önce Mısır’a gitti ve bu çalışmaları (geometriyi) Yunanlılara tanıttı. Bizzat kendisi, pek çok temel önerme keşfetti; diğer prensiplerin ışığı altında, onları kendisinden sonra gelenlere öğretti. Onun yöntemi daha genel (daha kuramsal ve daha bilimsel), diğerlerinin yöntemleri ise daha emprikti.”

    Thales’le birlikte geometri ilk defa dedüktif (yani tümdengelimsel) bir bilim dalı haline geldi. Buna ilişkin olarak Plutarkos, Yedi Bilge adlı yapıtında şunları söyler :

    “Görünen şudur ki Thales, aklıyla pratik yararın ötesine geçip, akıl yürütmeye girişenlerden birisidir. Geri kalanlar aklın ününü, politikada arayanlardır.”

    Thales’in bir piramidin yüksekliğini nasıl ölçmüş olduğuna ilişkin söylentiler çok değişiktir. Bunlardan en yalını Aristoteles’in bir öğrencisi olan Hieronymus’a aittir. Onun açıklamaları, Diogenes Laertius tarafından şöyle anlatılır :

    “Hieronymus, Thales kendi gölgesinin, kendi boyuna eşit olduğu anda, piramidin gölgesini ölçerek yüksekliğini bulmuştur demektedir.”

    Bu yaklaşımıyla, Thales bir cismin gölgesinin, kendi boyuna eşit olduğu bir anda, diğer bütün cisimlerin gölgelerinin de, kendi boylarına eşit olacağı sonucuna ulaşmış oluyordu. Thales’in kullandığı bu yöntem, Mısırlıların kullandıkları se get hesabından başka bir şey değildir. Bu yöntem 57 numaralı Ahmes papirüsünde açıklanmıştır.

    Thales, bir geminin kıyıdan ne kadar uzak olduğunun ölçülmesi ile de ilgilenmiştir. Bu ölçümü, iki dik üçgenin kenarları arasındaki orantıdan yararlanarak yapmıştır. B, şekildeki (şekil 4) kulenin tabanı, C ise gemi olsun. Bir kimse kulenin tepesinde, elinde birbirini dik açıyla kesen bir araç bulundursun. Onun bir kenarı olan AD, Yer’e dik bir konumda bulunsun. AE kenarı ise gemi yönünde olsun. Sonra öyle bir gözlem noktası saptansın ki, bu noktadan C gemisi görülebilsin. AC doğrusu, E noktasında, aracın yatay kolunu keser. AD = 1, DE = m ve BD = h denilecek olursa, BC doğrusu, yani geminin karaya olan uzaklığı, BC = (h * 1) . m / 1 olur.

    (Thales teoremi uygulanarak BCE=ADB, BC = (AD / DB). DE elde edilir.)

    Aşağıdaki geometrik öneriler ona atfedilmektedir :
    1. Yarıçap, daireyi iki eşit parçaya böler.
    2. İkizkenar bir üçgenin tabanına komşu olan açılar eşittir.
    3. İki doğru kesiştiğinde karşıt açılar eşittir.
    4. Yarım daireyi gören açılar diktir.
    5. İkişer açısı ve birer kenarları eşit olan üçgenler birbirlerine eşittir.

    Thales, eşit açı yerine benzer açı deyimini kullanmaktadır; bundan da açıyı nicel bir büyüklük olarak değil, bir şekil olarak düşündüğü sonucu çıkmaktadır.

    Bunların kanıtlamalarını yapabiliyor muydu? Eşit oldukları sonucuna nasıl ulaşmıştı? Bu soruların yanıtını bulmak olanaksızdır. Ancak tarihte geometrik önerilerin gerekliliğine inanan ilk kişi Thales’tir.

    Thales aynı zamanda astronomiyle de ilgilenmiş ve tarih kitaplarına ilk Yunan astronomu olarak geçmiştir. Gökyüzündeki yıldızları gözlemlerken bir kuyuya düştüğünü herkes bilir. 28 Mayıs 585 yılında gerçekleşen Güneş tutulmasını daha önceden tahmin etmiş olmasına rağmen, Yer’in bir disk biçiminde olduğunu düşündüğünden, Ay ve Güneş tutulmalarının nedenlerini bilmesi olanaksızdı.

    Mısırlılardan yılın 365 gün olduğunu öğrenmişti. Kuzey yönünün bulunmasında Küçük Ayı’nın kullanılabileceğini biliyordu ve Yunan gemicilerine Küçük Ayı takım yıldızını gözlemleyerek seyahat etmelerini önermişti. Nitekim denizci bir millet olan Fenikeliler de Büyük Ayı’yı kullanıyorlardı.

    Thales her şeyin aslının su olduğunu söylüyordu; su, katı, sıvı ve gaz olmak üzere üç durumda bulunabilirdi. Suyun olmadığı yerde hayatın da olmayışı, bu maddenin aslî oluşunun en güçlü kanıtlarından biriydi. Thales, bu görüşleri ve Homeros’un hikayelerini bir yana bırakan gözlemsel düşünceleri nedeniyle bilimin doğuşunda önemli bir rol oynamıştır.

    Aristoteles’e göre, Thales, mıknatısın demir tozlarını çekmesi nedeniyle canlı olduğuna inanıyordu. Nasıl bir yorum getirirse getirsin, mıknatıstan söz eden ilk kişi de Thales’ti.

    Sokrates
    Bütün insanlık tarihinin en saygın kişilerinden birisi olarak tanınan Sokrates de aslında bir sofisttir. Atina’da doğmuş (M.Ö. 470) ve iyi bir eğitim görmüştür. Babası, onu kendi mesleğinde, yani bir heykeltıraş olarak yetiştirmek istediği halde, Sokrates felsefeye ilgi duymuştur. Meydanlarda, tiyatrolarda ve yollarda felsefî tartışmaların yapıldığı bir ortam içinde böyle bir istek gayet doğaldı. Sokrates, aritmetik, geometri, astronomi ve politikaya ilişkin yeterli düzeyde bilgiye sahipti. Çok basit bir yaşam sürmüştü. Her ne kadar görüşlerinin çok etkili olduğu kabul edilmişse de, hiçbir yapıt kaleme almamıştır. Onu iki öğrencisi, Platon ve Ksenofanes’in yazdıklarından tanımaktayız.

    Sokrates diğer sofistlerden çok farklıydı. Düzenli bir öğretim yapmıyor ve öğrencilerinden ücret almıyordu. “Kendini bil!” ilkesi doğrultusunda, düşünürlerin bakışlarını evrenden insana çevirmişti. Evreni anlamlandırmadan önce kendimizi anlamlandıralım; “Biz kimiz?” bu sorunun yanıtını verelim diyordu. Bu nedenle, yalnızca bir tarlayı ölçebilecek düzeydeki geometri bilgisini yeterli buluyor, daha zor matematik problemleriyle uğraşmanın yararsız olduğuna işaret ediyordu. Ona göre, insanlara, pratik ahlak kurallarını öğretmek daha isabetli olacaktı. Böylece Sokrates, kuramsal bilim ve uygulamalı bilim tartışmasını da açmış oluyordu.

    Sokrates ilk anlambilimcidir; anlamları belirlenmemiş kavramların ve terimlerin kullanılmasının sakıncalarına temas etmiştir. Her çeşit bilgide, kavramların ve terimlerin açık ve seçik bir biçimde tanımlamalarının yapılması gerektiğini savunmuş olması, dolaylı yoldan da olsa, bilimin ilerlemesine küçümsenemeyecek ölçüde katkıda bulunmuştur.

    Louis Pasteur

    Yapay Aşının Hazırlanması
    Louis Pasteur 1822’de Fransa’nın Jura bölgesinde Dole’de dünyaya geldi. Babası Napolyon’un taarruz birliklerinde hizmet ettikten sonra dericilik işine girdi. Pasteur babasının bir tabakhane kiraladığı Arebeis’te büyüdu, eğitiminin büyük bölümünü Arebeis kolejinde sıradan bir öğrenci olarak sürdürdü. Şöhret tutkusu vardı; ama bunu çok çalışarak elde etti. Yüksek eğitimini sürdürmek için Paris’e gitti. Ne var ki güçlükle bir okula girdi. Lisansını Bescançon’da aldı ve sonunda Ecole Normale’a girdi. 1846’da bitirme sınavını geçerek lS47’de doktorasını aldı. Bu sınavlarda gösterdiği yüksek başarıyla Ecole’de laboratuvar as is tanı oldu.

    Pasteur’un ilk çalışmaları bazı kristal yapıların optik etkinliği üzerineydi. Kimi kristal yapıların polarize ışığın düzlemini sağa veya sola döndürme yeteneği vardı. Pasteur, bu gücün kristallerin asimetrik geometrisinden geldiğini deneyselolarak gösterdi. Kristal yapısının moleküler asimetrinin bir gereği olduğunu düşündü.

    1848’de Strazburg’a yardımcı profesör olarak atandı. 1849’da Strazburg Akademisi rektörünün kız kardeşi Marie Laveur’la evlendi. Pasteur çiftinin beş çocuğu oldu; ama bunlardan üçü çocuk yaştayken öldü. Daha sonra, kristalografi çalışmalarından dolayı uluslararası çapta ün kazandı.

    Kimyanın biyolojiye uygulanmasıyla ilgileniyordu. Bu da bir ölçüde onun, asimetri ile yaşamın ilintili olduğuna inanmasından kaynaklanıyordu. 1854’te Lille’ye gitti. O günlerde mayalanm~ mekanizmasına karşı ilgisi gelişmeye başladı. Her türlü mayalanma işleminin özünde bir mayanın olması gerektiği düşüncesinden hareket ederek, genel bir tohum kuramına ulaştı. 1857’de Paris’e, girmek için onca güçlük çektiği Eeole Normale’e bilimsel çalışmalar yöneticisi olarak döndü.

    Pasteur Paris’e varır varmaz bilimsel araştırmaları destekleyen kişilere başvurdu. Louis Napoleon (Napoleon III) ve İmparatoriçe’nin yakın çevresindeki kişiler arasına girdi. İmparator ve İmparatoriçenin tahtan indirilmesine karşı çıktı. 1860’ların başlarında Pasteur kendisini çeşitli tartışmalar arasında buldu. Kendiliğinden alevlenen bu tartışmalarda şu soruya yanıt aranıyordu: “Canlı biçimler, cansız maddelerden türeyebilir mi?” Örnekleri açıkça görülen bu olgunun, havada taşınan sporlardan kaynaklandığını göstermek için mayalanmayla ilgili bilgilerine başvurdu.

    Maya tohumları üzerine çalışma teknikleri, aynı zamanda hastalıkların nedenleri üzerine çalışmaya da uygulanabilirdi. İpek böcekçiliği endüstrisine zarar veren salgın hastalık üzerinde çalışmaya yöneldi.
    1868’de sol tarafına inme indi. Bu durumda çalışmalarını sürdürebilmek için büyük bir yardımcılar ordusunu işe almak zorunda kaldı.

    Hastalıklar üzerine çalışmak, mayalanma tohumu kuramından hareketle hastalık mikro bu kuramını oluşturmak, Pasteur’un son çabalarıydı. 1870 Fransa-Prusya savaşı ve Komün döneminde Paris dışında kaldı. Şarap mayalama işlemi üzerine çalıştı. Paris’e dönüşünde insan ve hayvan hastalıklarının önlenmesine ve tedavisine ilgisi giderek arttı. 1874’de aktif öğretmenlikten çekildikten sonra dikkatini sıkça karşılaşılan bir soruna, şarbon hastalığına yöneltti. Kuduz gibi daha öldürücü hastalıklarla ilgili alt çalışmalarında ise, araştırmanın gerektirdiği diri-açımlamaktan (vivisection) iğrendiğinden, giderek daha çok asistanın yardımına ihtiyaç duydu.

    1886’da kalp krizi geçirdikten sonra sağlığı gittikçe kötüleşti. 1887’de bir ~riz daha geçirdi. En son, 1895 yılında geçirdiği bir beyin kanamasından sonra bir daha iyileşemedi ve bu dünyadan ayrıldı.

    Pasteur’den önce hastalık kuramı
    1626’da J. B. van Helmont, hastalıkların yabancı varlıkların bedeni istila etmesinin bir sonucu olarak düşünmüştü. İstilacılar bir kez yerleşmeye görsün, bölgenin her şeyini kendi çıkarları için sömürüyorlardı. Kurban, istilacıların bıraktıkları zehirli artıklardan ötürü yaşamsal işlevlerini yerine getiremiyordu. Özünde bu kuram çağdaş yaklaşımın öncülüdür. Ama Helmont’un düşüncesi, 200 yıldan fazla bir zaman boyunca rakip kuramlarla, hastalıkları hastalanan organların kusurlu işleyişine bağlayan kuramlarla, bir anlamda bedenin kendi kendini zehirlemesine bağlayan kuramlarla yan yana yürüdü. Bazı durumlarda dışsal nedenler akla gelmişti. Ne var ki, bunlar genellikle yabancı ve düşman organizmalardan çıkan çok zehirli hava (mal’arie) gibi şeylerdi.

    Kötü kokuların neden olduğu hastalıklar kuramı ışığında, 19. yüzyılın başlarında zaman zaman mıntıka temizliği yapıldı. Bunun dışında başarılı tek önleyici tedavi Edward Jenner’in geliştirdiği çiçek aşısıydı. Jenner çiçek hastalığının ineklerde ve insanlarda benzer. etkileri olduğunu gördü. Yalnız tek farkla, inekte çiçek hastalığı, latince ‘variola vaccinae’ (vaeca, yani inekten), insanların çiçek hastalığından daha hafif seyrediyordu.

    19. yüzyılın ortalarında hastalıklar ile mikro organizmalar arasında ilişki kurmak için yeterince delil vardı. Schwann ve diğerleri hasta insan ve hayvanlardan alınan çeşitli sıvılar üzerindeki mikroskobik incelemeler sayesinde, hastalarda görülen ama sağlıklı olanlarda görülemeyen özel mikrop biçimlerinin varlığını göstermişlerdi. Ancak eski düşüncenin savunucuları, bu mikropların bedenin kusurlu çalışması yüzünden oluşan düzensiz ortamın bir yan etkisi olduğunu söyleyerek itiraz ettiler.

    Çağdaş hastalık bilgisine sıçramak için üç adım daha atılması gerekliydi. Öncelikle hastalıkların mikroorganizmaların saldırısı yüzünden ortaya çıktığı gösterilmeliydi.

    Bu adımın başarıya ulaşması için mikroorganizmaların kendiliğinden ürediği düşüncesinin terk edilmesi gerekiyordu. Üçüncü adımda Edward Jenner’in aşılama kuramını açığa kavuşturması ve genelleştirilmesi gerekiyordu. Bu adımların her birinde Pasteur’ün büyük yardımı oldu. Bu bölümde onun katkılarından yalnız biri, aşı üretim yönteminin bulunuşu ayrıntılarıyla anlatılacaktır.

    Pasteur mayalanma.işlemini çözmek için büyük zaman ve emek harcamış, mayalanmayı gerçekleştiren canlı organizmaların varlığına dikkat çekmişti.
    Mayalanma gerçekte her mayanın içindeki belirli organizmaların yaşam süreçlerinden başka birşey değildi.

    Sonuçta Pasteur mayalanmanın tohum kuramını oluşturdu. Mayalanma işleminin kendiliğinden başla yamayacağı düşüncesinden hareketle, hastalıklara ilişkin mikrop kuramına ulaşmak zor değildi.

    Gerçekten Lister de, kendi açısından yaraların çürümesini bir tür mayalanma olarak değerlendirmektedir. Lister’in antiseptik olarak karbolik asit kullanması, doğrudan doğruya bu düşüncenin bir uygulaması sayılır. Yine Lister, Pasteur tarafından yapılan bir maya tanımı ile kendisinin hasta hayvanların kanında bulduğu çubuk biçimli basiller arasında benzerlik kurmuştu.

    Davaine işte bu benzerlikten esinlenerek şarbon hastalığı ile ilgili araştırmalara girişmişti.
    Artık bize yabancı gelen 19. yüzyıl ortalarındaki terminolojiyle işin içinden çıkabilmek için, mikrobik ve virüslü hastalıklar arasında o günlerde henüz yapılan ayrıma dönmek gerekiyor. Hastalıkların ortaya çıkmasında mikropların rolü olduğuna inananlar, mikrop barındıran hastalıklar ile diğerleri arasında bir ayrım yapmalıdır. Mikrop barındırmayan hastalıklardan, bazı zehirler veya “virüs”ler sorumludur. Ayrıca, su çiçeği gibi virüse bağlı hastalıklar bağışıklık sistemini uyarıyordu. Böylece hastalığı bir kez atlatan, aynı hastalığa yeniden yakalanmıyordu. Kısa zamanda “virüs” terimi, mikroplar da içinde olmak üzere, hastalık yapan her türlü unsuru kapsayacak biçimde genelleştirildi.

    Pasteur’ün araştırmalarını anlayabilmek için, şaşırtıcı bir olguya daha değinmeliyiz. Tıp adamları nedeni ne olursa ol sun, bir hastalıkta virüslerin hastalığa yol açma yeteneğinin
    (virülans) her zaman aynı olmadığını bilirler. Salgınlar gelmiş geçmiştir. Hastalıklar az ya da çok ciddi biçimlerde ortaya çıkmıştır. Değişik virülanslara ilişkin ilk sistematik açıklama, Pasteur’un septisemi mikropları üzerine ilk çalışmalarında ortaya çıktı. Pasteur, septiseminin farklı “kültürler”de (laboratuarda hazırlanan mikroorganizmalara verilen adla) farklı yayılma hızına sahip olduğunu gösterdi. Kim bilir, kültürlerde mikropları bu şekilde değiştiren bir şeyin olup olmadığını sormuştur kendi kendine.
    ‘Virüsler’in zayıflamasının keşfi Araştırmalarda tek bir deneyi yalıtmak ve buluşu incelemenin bir noktasına yerleştirmek çoğu zaman olanaksızdır. Burada anlatacağım çalışma, biri tavuk kolerası üzerine, diğeri şarbon üzerine iki büyük deneysel incelemeye dayanıyor. Bunlar birbirinden bağımsız değildi. Sonuca ulaşmak için her ikisinin de yapılması gerekiyordu.

    Tavuk kolerası, kümes hayvanları arasında görülen ve tez ölüme ***üren salgın bir hastalıktır. Hastalık çok belirgin belirtilerle birlikte ortaya çıkmaktadır. Kanda oksijen eksikliği, sersemlik, ibiğin kırmızı rengini yitirmesi başlıca belirtiler arasındadır. Hastalığın ilerleyen evrelerinde ölümcül bir oksijen açlığı görülür. Toussaint hasta kuşların kanlarında kolayca belirlenen ve belirgin özellikleri olan bir mikrobun tavuk kolerasıyla ilişkili olduğunu göstermişti.

    Pasteur, mayalanmanın ve hastalığın mikroorganizmalarca oluşturulduğu genel tezine uygun olarak, mikroorganizmalann saf kültürde yalıtılmasını sağlayacak bir deney programı hazırladı. Sonra elde edilen ürünü tavuklara şırınga ederek, tavuk kolerasına mikroorganizmalann yol açtığını kanıtladı. Tavuk suyunu uygun bir ortam haline getirerek, mikrobu üretebiliyor ve art arda gelen günlük kültürlerde mikrobun virülansını koruduğunu gösterebiliyordu.

    Pasteur, 1879 yılının .temmuz ile ekim aylan arasında dinlenmek üzere köyü Arbois’e gitti. Ama laboratuarında kolera mikrobu bulaştırılmış son tavuk suyu kültürlerini ardında bıraktı. Ekimde geri döndüğünde kültürler hala oradaydı. Böylece eski kültürleri yeni tavuklara şırınga ederek tekrar deneylere koyuldu. Ama hiçbir şey olmuyordu. “Talih ancak siz hazırsanız yardım eder” der, Pasteur o Bu durumda da kesinlikle öyle oldu. Eski kültürleri şırınga ettiği tavuklarla ve taze kültürlerle deney programını yeniden uygulamaya koydu. Bu tavuklar hastalanmadı. Pasteur bunu doğru yorumlamakta gecikmedi. “Virüsler”i yapay olarak zayıflatmanın bir yolunu bulmuştu.

    Pasteur, buluşunun duyurulmasında kurnaz davrandı. Aşağıdaki alıntıda kazaya hiç değinilmemiştir: “. . . sadece parazit yetiştirme işlemini değiştirerek, birbirini izleyen döllemeler arasına oldukça büyük zaman aralıkları koyarak, virülansı adım adım azaltacak bir yöntem bulduk. Sonuçta öldürücü hastalıktan koruyan, ama ılımlı bir hastalığa yol açan bir virüs elde ettik.”

    Şimdi yapılacak çok iş vardı. Öncelikle mikrobu zararsız hale gelmesi için gereken sürenin tespit edilmesi gerekiyordu. Bu da çeşitli zaman aralıklarıyla bekletilmiş kültürlerle çalışmak anlamına geliyordu. Zaman ile virü1ansın azalması arasında bir ilişki olduğu anlaşıldı. Bir ayı aşkın aralıklarla ekilen kültürler arasında zayıflama gözlenmedi. Fakat bundan sonra, zaman aralıkları uzadıkça zayıflama arttı. Pasteur sorunu tam anlamıyla aydınlığa kavuşturmak için, virülansı ölçmenin bir yolunu geliştirmeliydi. İki ayrı kültür dizisinin göreli virülansını (yaratıklar aynı tarzda ve aynı koşullar altında bulaştırıldığında) yol açtıkları ölüm sayısı oranına göre tanımlayarak, bir virülans değeri elde etti.

    Ardından zayıflama mekanizmasının aydınlatılması gerekiyordu. Pasteur uzun zamandır mayalanmada oksijenin rolü olup olmadığını merak etmişti. Mikropları ya da ortamı tazelemeden, kültürün ömrünün ve mikropların oksijene gösterdiği direnci n bir ölçüsü olabileceğini düşündü. Çeşitli kaplar tavuk suyu, taze virüsler ve. az havayla doldurulup beklemeye bırakıldı. Sıvılardaki gelişme birkaç gün sonra durdu. Benzer kültürler açık kaplarda da hazırlanmıştı. Kapalı şişede korunan kültürün zararsız hale gelebilmesi için iki ay geçmesi gerekiyordu. İki ay sonra açılan şişedeki kültür uzun hareketsizliğine karşın, kuşlara bulaştırıldığında “virülansının, şişe doldurulduğu zamandan beri aynen korunduğu görüldü. Açık havada yetiştirilen kültürlerse, ya ölü bulundular ya da virülans koşullarını bir ölçüde yitirmişlerdi.”

    Peki mikropları böylesine zayıflatan şey neydi? Pasteur bunu çözemedi. “Her ne kadar bazen böyle ilişkiler [morfolojik ayrımlar ve farklı virülans biçimleri arasındaki ilişkiler] ortaya çıksa da, virüsün küçük olması yüzünden, mikroskopla bakıldığında gözden yiterler.”
    Aşının hastalık virüsü ile ilişkisi artık çok açıktı: “. . . aşının [çiçek hastalığıyla] ilişkisi hakkında tartışmalar sürerken, biz tavuk kolerasının zayıflatılmış virüsünün, yine bu hastalığın çok güçlü virüslerinden elde edildiğinden ve bir virüs biçimini doğrudan doğruya başka biçime dönüştürebileceğimizden emindik. Her ikisinin de doğası özünde aynıydı.”
    Zayıflatmanın bulunuşu, kendini hazır duruma getirmiş akla, talihin yardımı sayesinde gerçekleşmişti. Ama diğer araştırmalar tümüyle Bacon’un önerdiği yolda ilerliyordu. Zaman ile zayıflama arasında bir ilişki vardı. Ne var ki, görünüş itibarıyla zaman olan etmen, aslında neydi? Pasteur bu soruya hiç bir zaman doyurucu bir yanıt veremedi.

    Sonraki gelişmeler
    Bu sonuçların genelleştirilmesinin ve aşıların hasta insanlara yapılacak düzeyde uygulamaya konulmasının olağanüstü öyküsünde, Pasteur başrolü oynuyordu. Pasteur’ün daha sonraki iki önemli çalışması, yani şarbon aşısının geliştirilmesi sayesinde hastalığın nasıl yayıldığını bulması ve kuduz üzerine son çalışmaları, bilim açısından öykünün en heyecanlı kısımlarını oluşturuyor.

    Bu araştırmaların en dikkate değer yanı, Pasteur’ün, karmakarışık empirik zorluklar cangılında, kuram rehberliğinde yolunu bulmuş olmasıdır. Mikroorgnanizma biyolojisi açısından, ev sahibinin tamamen başka bir ortam olduğu konusunda Pasteur son derece açıktı. Kolera mikroplarının üreme~Üne elverişli ortam tavuk suyu ya da tavuğun kendisiydi. İkisi arasında özel bir ayrım yoktu. Her ikisinde de mikrop büyür, gelişirdi. Bu yüzden farklı hayvan türleri “virüsler”in zayıflaması için olası bölgeler olarak düşünülebilirdi.

    Şarbonun bir mikropla ilgili olduğu düşünülüyordu. Ancak bu durumun keşfiyle, Toussaint, yanlışlıkla mikropları Süzerek tümüyle kimyasal bir aşı geliştirmeye çalıştı. Pasteur, dondurulmuş tavuklar üzerinde yapılan basit bir deneyden hareketle, bir kültür içindeki mikrobik etkinliğin kimyasal yan ürünlerinin değil, bizzat mikropların hastalık belirtilerine yol açtığını gösterdi. Böylelikle şarbon basillerini zayıflatmanın zorluğu ortaya çıktı; çünkü dirençli basiller sporlar oluşturarak kendilerini fazla oksijenden, ısıdan ve benzer etmenlerden kolayca koruyorlardı. Fakat Pasteur, şarbon kültürünün ısıtılmasını dikkatle kontrol ederek, sporların oluşumunu önleyebileceğini keşfetti. 42° C ile 44° C arasında sporlar oluşmadı. Herhangi bir hata kabul edilemezdi; çünkü 45° C’de mikroplar ölüyordu. Deney son derece narin bir alanda gerçekleştirilmesine rağmen sonuçlar yeterince fikir veriyordu. Zaman tekrar devreye girdi ve yalnızca sekiz gün sonra tam bir zayıflatma gerçekleştirildi. Pasteur’ün bunları kamu önünde sınayabilmesi için büyük Pouilly-Ie-Fort testi düzenlenmişti. Bir zamanlar Pasteur’ü eleştiren A. M. Rossignol, organizasyonu üstlendi. 5 Mayıs 1881’de yirmi dört koyun, bir keçi ve altı sığıra, zayıflatılmış şarbon kuşağı aşılandı. 31 Mayısta bu hayvanların yanı sıra yirmi dokuz hayvana zayıflatılmamış bir kültür enjekte edildi. 2 Haziranda aşılanmış hayvanların tümü sapasağlamdı. Daha önceden aşılanmamış koyunların tümü ölmüş, sığırlarınsa, hepsi hastalanmıştı.

    Sonuç Pasteur için tam bir zaferdi. Fakat işlerinin hızla Fransa ve İngiltere’ye yayılmasına, “fabrika” sının aşıyı büyük ölçeklerde üretmesine karşın, Pasteur, apaçık başarışı karşısında zıvanadan çıkan Alman meslektaşı Robert Koch’un hışmına uğradı. Ancak, Alman çiftçilerinin baskısı sonucunda Alman Tarım Bakanlığı aşıyı kullanmaya ikna edilebildi.

    Kuduza gelince, o sadece çok tehlikeli bir hastalık olmakla kalmıyordu. Kuduzun nedeni, bildiğimiz gibi, – kelimenin şimdiki anlamıyla – bir virüstü. Bu yüzden daha zayıf bir soy yetiştirmek için depolanacak organizmaları mikroskobik olarak saptama şansı yoktu. Ama Pasteur önemli bir şeye dikkat etmişti: Hastalık öncelikle sinir sistemine saldırıyor ve kurbanın beyninde açıkça belirlenebiliyordu. Hayvanların ‘biyolojik ortam’ olduğu biçimindeki temel düşüncesine dönerek bir omurga kemiğini kültür ortamı olarak kullanmaya karar verdi. Hastalık tavşanlara bulaştırılarak, onların gizemli organizmalarca istila edilmiş omurga kemikleri elde edilebilirdi.

    Tavşanlardan bu şekilde elde edilen örnekler steril atmosfer de bırakılmış ve yavaş yavaş kurutulmuşlardı. Kemiklerin suyundan yapılan hamurlar aracılığıyla hastalık bulaştırılan hayvanlarda kudurma oranı giderek azaldı. Burada da zayıf lama tümüyle zamana ve doğru ortamın seçimine bağlıydı. Sonuçta efsanevi olay meydana geldi. Pasteur kuduz bir köpek tarafından ısırılan çocuğu aşı olmaya ikna etti, mucize gerçekleşti, çocuk kurtuldu.

    Arkhimedes( İÖ 290,280 – İÖ 212 – 211)
    Gençliğinde kısa bir süre, dönemin bilim merkezi olan Iskenderiye’de kaldığı sanılan Arkhimedes ‘in yaşamının büyük bölümünü bir yunan kent devleti olan Syrakusa’da geçirdiği ve Syrakusa kralı II. Hieron’un yakın dostu olduğu biliniyor. IÖ 213′te başlayan roma kuşatmasında, yaptığı savaş araçlarıyla Syrakusa’nın düşüşünü uzun süre geçiktiren ve kent romalıların eline geçtiği sırada romalı bir asker tarafından öldürülen Arkhimedes’in ünlü problemini simgeleyen, silindir içine yerleştirilmiş küreyle işaretli mezarı ölümünden yaklaşık 150 yıl sonra Cicero tarafından bulundu.
    Arkhimedes, çağındaki ününü kendi adını taşıyan burgu ve biri yıldızların konumunu diğeri Güneş’in, Ay’ın ve gezegenlerin hareketini gösteren iki astronomi küresi gibi buluşlarına borçludur. Arkhimedes’in yaşamıyla ilgili olarak günümüze ulaşan ayrıntılar hiçbir Eskiçağ bilim adamınınkiyle karşılaştırılamayacak kadar çoktur. Ancak bu bilgilerin arasında, Hieron’un tacındaki altın oranını saptamak için bir yöntem bulduğunda Eureka(buldum) diye bağırarak hamamdan fırladığı; bana bir dayanak noktası verin dünyayı yerinden oynatayım dediği ; Romalı’ların gemilerini yakmak için dev aynalar kullandığı ve Romalı bir askerin uyarısına karşın, uğraştığı bir matematik problemini yarım bırakmak istemediği için öldürüldüğü gibi yakıştırma öykülerde yer alır.
    Arkhimedes, Düzlemlerin dengesi üzerine adlı yapıtında, doğrularla sınırlı düzlemsel biçimlerin ve konik dilimlerin ağırlık merkezlerinin belirlenmesi problemini ele aldı. Arkhimedes bu yapıttaki kaldıraç yasası nedeniyle mekaniğin kurucusu olarak kabul edilmişse de, kaldıraç yasası ve belkide ağırlık merkezi kavramı Arkhimedes’ten önce bilinmekteydi. Arkhimedes’in bu konudaki özgün katkısı bu kavramları konik kesitlere uygulamış olmasıdır.
    Işığın kırılmasını da inceleyen katoprik(ışığın aynadan yansıması) ile ilgili yapıtı, yüzleri düzgün çokgenlerden oluşan ve küre içine yerleştirilen yarı düzgün 13 çokyüzlü(Arkhimedes çokyüzlüleri) üzerine çalışması ve belirsiz analiz konusundaki sekiz bilinmeyenli problem özellikle önemlidir.
    Arkhimedes, ilkçağda önemli bir astronomi bilgini olarakta tanınırdı. Çeşitli, gökcisimlerinin yerden uzaklığı ile ilgili olarak Arkhimedes’ e mal edilen (ve büyük olasılıkla gerçekten Arkhimedes ‘e ait olan) bazı sonuçların gözleme değil, Pythagorasçı kurama dayanması şaşırtıcıdır.
    Arkhimedes’ in bulduğu kaldırma kuvvetine ilişkin yasaya göre, bütünü yada bir bölümü, durgun bir akışkanın (gaz yada sıvı) içine batırılan cisimlere yukarı doğru yönlenmiş, bir kaldırma kuvveti etki eder ve bu kuvvetin büyüklüğü cismin etkisiyle, yer değiştiren akışkanın ağırlğına eşittir. Yer değiştiren akışkanın hacmi, akışkana bütünüyle batırılan cismin tüm hacmine, bir bölümü batırılmış cisminse akışkan yüzeyinin altında kalan kesiminin hacmine eşittir.

    Feza Gürsey
    Feza Gürsey (1921-1992)
    1940′ta Galatasaray Lisesini bitiren Gürsey 1940-44 arasında Istanbul Universitesi Fen Fakültesinde (İÜFF) fizik öğrenimi gördü. Daha sonra Ingiltere’ye gitti ve 1950′de Londra Universite’sine bağlı imparatorluk bilim ve teknoloji yüksek okulu’nda doktora çalışmasını tamamlayarak Türkiye’ye döndü.

    1951′de İÜFF’ye genel fizik asistanı olarak giren Gürsey, 1957′de ABD’ye giderek Brookhaven Ulusal Laboratuvarı’nda ve 1958-60 arasında Princeton Universite si’nde araştırmalar yaptı.

    1960-61 yıllarında konuk yardımcı profesör olarak Columbia Universite’ sinde dersler verdi. Ve daha sonra Türkiye’ye dönerek 1961′de Orta Doğu Teknik Universitesi’nin(O.D.T.Ü) Teorik Fizik Bölümü’ nde Profesör oldu.

    1963′te yeniden ABD’ye giden Gürsey 1963-67 arasında Yüksek Araştırma Enstütüsü’nde ve Yale Universite’sinde konuk profesör olarak dersler verdi. 1974′te O.D.T.Ü’den ayrılarak Yale Universitesi’ne geçti. Ve 1977′de Josiah Willard Gibbs adına kurulan kürsünün profesörlüğüne atandı.

    Feza Gürsey kuramsal fizik alnındaki çalışmalarını atom çekirdeğini oluşturan parçacıklar arasındaki temel etkileşmelerin ve bu parçacıkların iç yapısının incelenmesi üzerinde yoğunlaştırdı. Temel parçacıkların spinlerini inceledi. 1960′ta SU(2) X SU(2) bakışım grubunun lineer olmayan gösterimlerini geliştirdi.

    1964′te Italyan fizikçi Radicati ile birlikte çalışarak, çekirdek kuvetlerinin, spin ve izospinin yanısıra Gell-Mann ve Neeman’ın önerdiği SU(3) grubunda etkin olan acayiplik’ten de bağımsız olduğunu ifade eden SU(6) bakışım grubunu ortaya attı. 1974-76 arasında M.Günaydın ile birlikte yaptığı çalışmalarda o güne değin fizikte bulunmayacağı sanılan ayrıcalıklı grupların belirleyebileceği bakışımları araştıran Gürsey, kromodinamik ve elektromagnetik etkileşme yapan renkli kuvarklar ile zayıf(süresi 10 saniyeden uzun) ve elektromagnetik etkileşme yapan elektron, müon ve notrinolar gibi leptonları biraraya toplayan bileşik bir E6 grubunun içerdiği oktonyon cebrinin renk dinamiğiyle ilgisi olduğunu gösterdi.

    1976′da da bu grubun bir bileşik grup olabileceğini önerdi. Gürsey’in bu çalışmaları 1968′de TUBİTAK Bilim Ödülü, 1977′de Oppenheimer Ödülü,1979′da Einstein Madalya’sı, 1981′de New York Akademisi’nin Morrison Ödülü, aynı yıl İstanbul Universitesi’nin madalyası ve onur doktorluğu unvanını ve 1987′de Grup kuramı vakfının Wigner madalyasıyla ödüllendirilmiştir.

    1992 yılına kadar kaldığı Yale’de işgal ettiği kürsüyü ise Gibbs, Onsager ve Lamb gibi Nobel Ödüllü kişilerle paylaşıyordu. Ancak Gürsey, yine de sık aralıklarla Türkiye’ye dönüyor ve buradaki bilimsel aktivitelerinden vazgeçmemekte direniyordu.

    “Türkiye’ye gelişlerinde çeşitli üniversitelerde seminerler veriyordu. Nisan’da vefat etti; ondan önceki Aralık’ta Türkiye’deydi. ODTÜ’de, Bilkent’te, Edirne’de seminerler verdi. Yani o kötü hastalığına rağmen, ölmeden dört ay önce buralarda gezdi. Öleceğini biliyordu.

    Bunun için de kafasındaki bütün problemleri tamamlamak ihtiyacı içerisindeydi. Bir ara konuşurken ‘bu yıl on tane yayın yapabildim,’ dedi. Bu Feza’nın tavrı değildi. Ortalama yılda dört-beş yayın yapardı; problemlerini, biten yayınlarını senelere dağıtırdı,” diye anlatıyor Prof Gürses.





    bir bilim adamının hayatı
    , bilim adamar, elektrik üzerine çalışan bilim adamları, elektrik üzerinde çalışan bilim adamları, matematik bilim adamlarının hayatı, atomu bulan bilim adamları, bir bilim adamının hayatı kısaca, bilime emeği geçen bilim adamları, astronomi ile ilgilenen bilim adamları, bilim adamlarının bulduğu aşılar ve yararları, bir bilim adamının hayatını araştırma, bilim adamlarının elektiriği daha ucuz yapması çalışmaları, 5 türk bilim adamı, tarihle uğraşan bilim adamları, astronomi ile ilgilenen türk bilim adamları, ünlü bir bilim adamının hayatı, bir müzik adamının hayatı, atomu araştıran bilim adamları, bir bilim adam, 3 bilim adamının hayatı, matematikle ilgilenen bilim adamları, müzik adamının hayatı, uzay araştırması yapan bilim adamlarının hayatları, matematik hakkında bilim adamları, 5 tane bilim adamının adı ve hayatı
    , 3 bilim adaminin hayati
    , 3 bilim adamının hayatı
    , 5 bilim adami
    , 5 bilim adamının ismi
    , 5 tane bilim adamının eserlerinin hangi alandadır
    , 5 tane en ünlü bilim adami
    , 5 tane türk bilim adamı
    , 5 türk bilim adamı
    , 5 türk bilim insanı
    , adamlarinin
    , atom araştırmaları yapan bilim adamları
    , atom ile ilgilenen bilim adamları
    , atomla ilgilenen bilim adamları
    , atomu bulan bilim adamları
    , bilim
    , bilim adamlarinin açtiklari derin kuyu
    , bilim adamları beş tane
    , bilim adamları ve hayatları
    , bilim adamların önerdigi 10 tavsiye
    , bilim adamlarının bitirdiği okullar
    , bilim adamlarının bitirdiği okulları
    , bilim adamlarının daha ucuz elektrik araştırmaları
    , bilim adamlarının hayatı
    , bilim adamlarının hayatı ingilizce olarak
    , bilim adamlarının ingilizce hayatları
    , bilim adamlarının ingilizce hayatı
    , bilim adamlarının ucuz elektrik çalışmaları
    , bilim adamlarının ucuz elektrik ile ilgili çalışmaları
    , bilim adamının bitirdiği okullar
    , bilime emeği geçen bir bilim adamının hayatı
    , bilime hizmet yapmış bilim adamları hayatları
    , çarpma kuvveti hesabı
    , dunyaca unlu muzık adamları ısımlerı
    , dünyaca ünlü bilim adamlarını isimleri
    , elektriği bulan bilim adamları
    , elektrik makinalarında bilim adamların rolü
    , emegi gecen bir bilim adami
    , fakir bilim adamı hayatı
    , fonksiyonlarda maksimum ve minimum bölünme noktalarının bulunması soruları
    , guglielmo marconi bilim adamının ingilizce hayatı
    , güneş enerjisi ile ilgilenen bilim adamları
    , hayati
    , hayvanları deney aracı olarak kullanmak ile ilgili makaleler
    , iki bilim adamının hayatı
    , ilk kadın astronominin çektiği sıkıntılar
    , ingiliz bilim adamları isimleri
    , ingiliz bilim adamlarının ingilizce hayatı
    , ingiliz bilim adamlarının isimleri
    , ingiliz bilim adamının hayatı ingilizce
    , ingilizce bilim adamının hayatı
    , ingilizce unlu bilim adamlari
    , insan sağlığına yararlı işler yapmış bilim adamları
    , insan sağlığına yararlı işler yapmış doktorlar
    , insan sağlığına yararlı işler yapmış olan bilim adamları
    , insan sağlığına yararlı işler yapmış olan bilim insanları
    , insanlığa emeği geçen ünlü bilim adamlarından birinin hayatı
    , kuşlarda ters akım şiddeti
    , matematik bilim adamlarının isimleri
    , radyasyonla ilgilenen bilim adamları
    , rayleighajeans formülü
    , sanat adamının hayatı
    , sokrates asılma nedeni
    , tarih boyunca atomla uğraşan bilim adamları
    , türk bilim adamlarının çektiği sıkıntılar
    , ucuz elektrik çalışmaları bilim adamlarının
    , ucuz elektrik hakkında bilim adamlarının araştırmaları
    , uppsala animasyon çalışanları
    , uzay ile ilgili çalışmalar yapan bilim adamları
    , ücret teorileri bilimsel makale
    , ünlü bilim adamları isimleri
    alintidir

+ Konu Cevapla
2 / 2 Sayfa BirinciBirinci 1 2

Benzer Konular

  1. uzay araştırmalaru yapan bilim insanları
    By Kayıtsız in forum Sorun Cevaplayalım
    Cevaplar: 1
    Son Mesaj: 05-03-2011, 17:49
  2. Uzay turizm - Uzay Turizmi Nedir? - Uzay Turizmi Hakkında
    By NoBoDyS in forum Turizm Sektörü
    Cevaplar: 0
    Son Mesaj: 03-24-2011, 22:12
  3. uzay nedir? uzay tanımı - uzay hakkında bilgi
    By Mr. NuteLLa in forum Nedir
    Cevaplar: 2
    Son Mesaj: 10-16-2009, 00:51
  4. Uzay Araştırmaları
    By ~aTRoPa~ in forum Astronomi (Gökbilimi)
    Cevaplar: 0
    Son Mesaj: 05-19-2009, 16:14
  5. Osmanlı Araştırmaları Vakfı , Osmanlı Araştırmaları Vakfı Hakkında
    By Boramir!! in forum Türk Dünyası Ve Kültürü
    Cevaplar: 0
    Son Mesaj: 08-10-2008, 13:24

Etiketler

Yetkileriniz

  • You may post new threads
  • You may post replies
  • You may not post attachments
  • You may not edit your posts

Content Relevant URLs by vBSEO 3.6.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375